
The Society for Integrative and Comparative Biology

with the

American Microscopical Society and

The Crustacean Society

Final Program Oregon Convention Center Portland, Oregon 3-7 January 2016

SICB		Posters - Wednesday 6 January 2016	
P3-80	Voisinet MP, Vasquez MC, Elowe C, Crocker DE, Tomanek L; California Polytechnic State University, San Luis Obispo, Sanoma State University	Proteomic response of elephant seal pups, <i>Mirounga an- gustirostris</i> , to prolonged fasting.	
P3-81	Schmidt JE, Sirman AE, Clark ME, Reed WL, Heidinger BJ; North Dakota State University	Telomere length correlations of somatic tissues in juvenile Franklin's gulls	
P3-82	Rahe CE, Neptune TC, Bouchard SS; Otterbein University	Metabolic plasticity in red-eyed treefrog larvae	
P3-83	Neptune TC, Rahe CE, Bouchard SS; Otterbein University	Predation risk in the face of limited resources: nutritional plasticity in red-eyed treefrogs	
P3-84	Usher CR, Bouchard SS; Otterbein University	Growth rate plasticity in larval leopard frogs	
Digestive Physiology			
P3-85	Leigh SC, German DP; University of California, Ir- vine	The resource acquisition strategies of seagrass-eating bonnethead sharks	
P3-86	Rott KH, Caviedes-Vidal E, Karasov WH; University of Wisconsin, Madison, Universidad Nacional San Luis & CONICET	Intestinal enzyme activity in nestling house sparrows (<i>Passer domesticus</i>) not depressed by high dietary lipid content	
P3-87	Nguyen-Phuc BQ, Stewart S, Demetropoulos C, German DP; University of California, Irvine, South- west Aquatic and Terrestrial Consulting, Thousand Oaks		
P3-88	Wehrle BA, Nguyen-Phuc BQ, Dang RK, Krajnovic M, Tadic Z, Herrel A, German DP; University of Cali- fornia, Irvine, University of Zagreb, CNRS/MNHN	Seasonal and sex effects on the digestive physiology of a newly herbivorous lizard	
P3-89	Plakke MS, Goetz BJ, Meslin C, Clark NL, More- house NI; University of Pittsburgh	Stomachs in your butterfly: exploring the identity and speci- ficity of proteases in the reproductive tract of female but- terflies	
P3-90	Secor SM, Andrew AL, Castoe TA; University of Ala- bama, University of Texas at Arlington	Single-cell RNAseq differentiates gene expression among cell types of the small intestine	
P3-91	Smoot SC, Smith CR, Halanych KM; Auburn Uni- versity, University of Hawaii at Manoa	Gene expression of cellulose degradation in the wood-eat- ing bivalve <i>Xylophaga washingtona</i>	
Cardiovascular and Respiratory			
P3-92	Reeve CM, Onthank KL; Walla Walla University	Can octopuses breathe air?	
P3-93	Webber MA, Ivanov BM, Johnson MA; Trinity University	Interspecific variation in blood physiology in Caribbean Anolis lizards	
P3-94	Hou JJ, Cornell A, Williams TD; Simon Fraser University	How developmentally mature are chicks at fledging? Varia- tion in hematology during a critical life-history transition	
P3-95	Marshall H, Bernal D, Skomal G, Richard B, Bush- nell P, Whitney N; Mote Marine Laboratory, Univer- sity of Massachusetts Dartmouth, Massachusetts Division of Marine Fisheries, National Marine Fisher- ies Service, NOAA, Indiana University South Bend	Blood stress physiology parameters and mortality rates of sharks after commercial longline capture	
Terrestrial Locomotion			
P3-96	Tennett KA, Costa DP, Fish FE; West Chester University, University of California, Santa Cruz	Kinematics of terrestrial locomotion of northern elephant seals	
P3-97	Polet DT, Hasaneini SJ, Bertram JEA; University of Calgary	Quadrupedal walking revisited: energy minimization strat- egy of walking dogs	
P3-98	Harvey RJ, Roskilly K, Hubel TY, Evans HE, Wilson AM; Royal Veterinary College	A snapshot of the domestic cat's daily life in different envi- ronments	
P3-99	Minicozzi M, Finden A, Gibb A; Nothern Arizona Uni- versity	Are there performance tradeoffs in the ability to perform the aquatic C-start and terrestrial tail-flip jump in killifishes?	
P3-100	Usherwood JR, McGowan CP; The Royal Veteri- nary College, London, University of Idaho	An energetic account for the higher prevalence of bipedal hopping versus running among smaller animals using in- termittent or fast gaits	

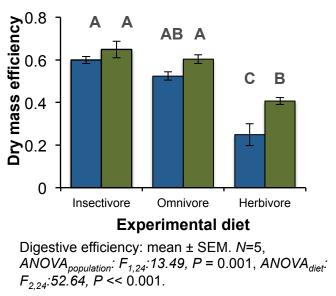
Seasonal and sex effects on the digestive physiology of a newly herbivorous lizard

Beck A. Wehrle¹, Bao-Quang Nguyen-Phuc¹, Robert K. Dang¹, Zoran Tadić², Marija Kranjović², Anthony Herrel³, & Donovan P. German¹ ¹University of California, Irvine; ²University of Zagreb; ³ CNRS/Muséum National d'Histoire Naturelle, Paris

System

Podarcis sicula experimentally moved from Pod Kopište to Pod Mrčaru in 1971. In <30 generations Pod Mrčaru found to feed mainly on plants while the Pod Kopište population remained primarily insectivorous.[†]

ing. Knowing what an animal actuall


ests allows us to understand if its physiology and morphology are optimized for its nutritional source. A vulation of Italian Wall Lizards (*Podarcis sicula*) in Croatia has become primarily herbivorous and

cture and enzyme activity across populations of males in spring and summer, and in females i

pgically distinct from its source population in ~30 generations, making it a compelling example naracterize the changes that occur on this short timescale, we compared gut

stive efficiency of plants than their source counterparts. Stable isotop

to the source population. Although we found no differences in gut length we did find differences in the cross-sectional surface area in some gut regions. Females vorous population had longer guts and we identified qualitative differences in their gut ucture. As such, we expected to find greater differences in gut enzyme activities across seasons and values. We found no seasonal differences in enzyme activity, but did find higher pancreatic amylase tivity in "herbivorous" females. Thus, sex and population each appear to affect the strategy each gro

Pod Mrčaru population:

- **†** bite force
- nematodes in their hindguts
- hindgut chambers
- • digestive efficiency of plants

Diet

Pod Mrčaru lizards consume more plant material:

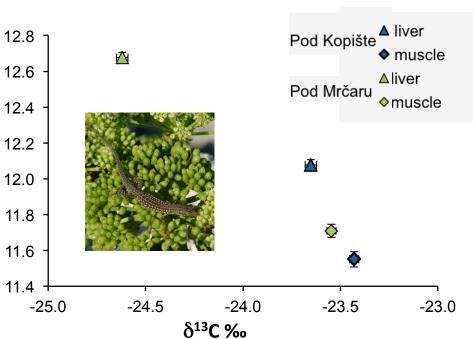
- than Pod Kopište lizards[†]
- in summer[†]

No sex differences for stomach contents[†]

¹³C and ¹⁵N isotopic analyses of *tissue* from males in summer


Stable isotope analyses confirm seasonal differences in assimilated diet

- **x** Pod Kopište population
- ✓ Pod Mrčaru population


Pod Mrčaru population short term isotope signatures (liver: ~20 days§):

- $\hbar \delta N^{15}$ (*P*=0.035) × 12.2 • unusual for an herbivore to δ^{15} N be more N¹⁵ enriched 12.0
- $\oint \delta C^{13} (P=0.002)$
- more similar to carbon signature of cellulose (-25%)

No differences in long term isotope signatures (muscle: ~80 days§) P_{15N}=0.56, P_{13C}=0.52

spring Percentage of plant material in stomach contents in spring and summer of 2004-2007[†] and in summer of 2013. Mean +SD

Carbon¹³ and nitrogen¹⁵ isotopic signatures of P. sicula liver and muscle tissues in summer 2013, Mean ±SEM N=7, Analyzed with two-sample t-tests.

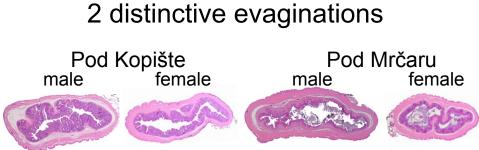
Hypotheses:

Pod Mrčaru lizards will have longer guts than:

- guts of Pod Kopište lizards
- *in summer than in spring* No differences in gut length by sex

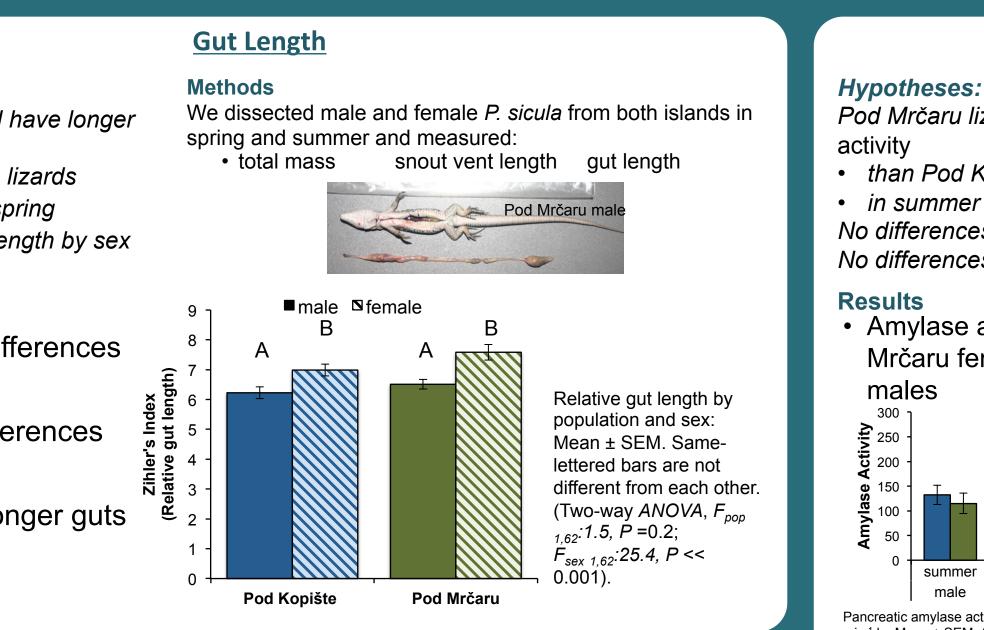
Results

- No population differences
- No seasonal differences
- Females have longer guts (*P*=2.4x10⁻⁶)


Hypotheses:

Pod Mrčaru lizards will have an increased cross sectional surface area: compared to Pod Kopište lizards

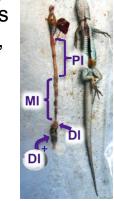
- in summer vs. spring No differences in surface area by sex

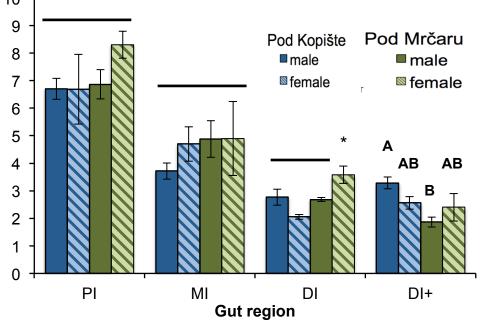

Results

Pod Mrčaru female DI+:

Representative DI+ sections from spring, not to scale

- DI: Pod Mrčaru female
 - Pod Mrčaru male (P=0.014)
 - Pod Kopište female (P=0.019)
- DI+: Pod Kopište male
 - > Pod Mrčaru male (*P*=5.98x10⁻⁴)
- No seasonal differences

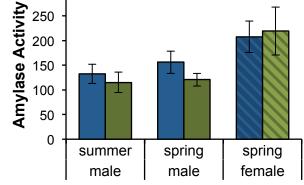

Gut Structure


Methods

θ

Divided guts from males (summer: N=5; spring: *N*=3) and females (spring: *N*=3) of both islands into proximal intestine (PI), mid intestine (MI), distal intestine sections (**DI**, **DI+**)

Histology: measured ratio of mucosa to serosa perimeters


Perimeter of mucosa × perimeter of serosa⁻¹ in proximal intestine (PI), mid intestine (MI), distal intestine (DI), and deep distal intestine (DI+) by population and sex. Samelettered bars and bars under the same line are not different from each other. Mean ± SEM. (DI: Two-way ANOVA, $F_{pop:sex 1,14}$:15.1, P <0.002; DI+: Two-way ANOVA, F_{pop} 1,16:20.5, P <<0.001, $F_{pop:sex 1,16}$:4.9, P <0.05).

Pod Mrčaru lizards will have 🛧 amyla

• than Pod Kopište lizards

No differences in aminopeptidase activ No differences in enzyme activity by se

 Amylase activity ↑ in Pod Mrčaru females than in

Pancreatic amylase activity in nmol of sugar liberated g-1 min⁻¹ by Mean ± SEM. (Pod Mrčaru male:female ANOVA, $F_{1.14}$:6.636, P =0.002)

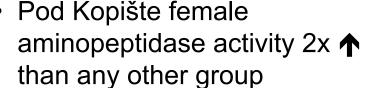
No seasonal differences in either enzyme

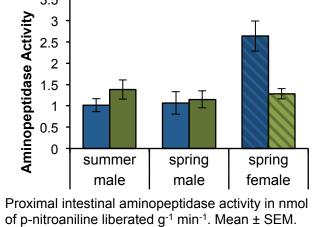
Despite seasonal differences in diet, we found no seasonal differences in digestive physiology.

Although Herrel et al. 2008 found no differences in diet between males and females, we found considerable sex differences in gut form and function. Thus, males and females appear to employ different strategies to meet their nutritional goals. The hindgut difference between Pod Kopište and Pod Mrčaru males suggests microbiome divergence may be key in explaining performance differences in males.

In addition to the hindgut valves discovered by Herrel et al., we have now identified differences in digestive physiology and anatomy throughout the intestines.

Herrel, A. et al. 2008. Rapid large-scale evolutionary divergence in morphology and performance associated with exploitation of a different dietary resource. PNAS 105:4792-4795.


Warne, R. et al. 2010. Tissue-carbon incorporation rates in lizards: Implications for ecological studies using stable isotopes in terrestrial ectotherms. PBZ 83: 608-617.



Enzyme Activities

	Mathada
	Methods
se	We performed amylase assays
	on pancreatic homogenates
	and aminopeptidase assays on
	PI homogenates: males
	(summer, spring N=7) and
ivity	females (spring, N=7) Assays at
sex	25°C, pH 8.6
DCX	,p
• Pod	Kopište female
i Uu	

(Two-way ANOVA, Fpop:sex, 35:17.265, P << 0.001)

Conclusions

THE REPORT